以勢流進行開口式沉箱波浪能轉換器流固 耦合的快速計算研究

黃季* 陳建宏*¹

*國立臺灣海洋大學 延平水下科技中心

關鍵詞:波浪能,開口沉箱,波能放大,勢流,波浪能轉換器

國科會計畫編號:NSTC 111-2221-E-019-036

摘要

本計畫提出勢流計算模式,以無網格法來分析開口沉箱波浪能轉換系統中的浮子流固耦合,透過勢流快速 計算特性,進行參數研究,搜尋波浪能擷取的優化參數組合,再進行耗時的黏性流分析。整體而言,可降低分 析時間成本,針對特定海域,快速找出最佳的參數組合與波浪能擷取量。

過去,我們以計算流體力學方法進行研究,曠日廢時,本研究成功發展出無網格法的流固耦合勢流計算, 包括時間域與頻率域相關理論的推導,以及程式的撰寫與案例計算,發現確實可加速優化參數組合的尋找。相 關的成果分作三部分,第一為只有浮子的運動計算、只有開口沉箱的波浪放大計算、結合浮子與沉箱的運動計 算。

前言

海洋是地球上最大的太陽能儲藏庫。理論上, 面積達六千萬平方公里的熱帶地區海域,每天所吸 收的太陽能,相當於 2500 億桶的石油[1],這個數 量遠遠超過目前人類的日常能源所需,全球海洋能 源的蘊藏量可說相當豐富。這些能源以數種形式儲 存在海洋中,主要包括溫差能、波浪能、海流能、 潮差能、以及鹽差能[2],目前只有潮差能發電有商 轉實績,潮流能發電與波浪能發電技術則緊追於 後,逐步往成熟方向邁進。

波浪能轉換系統的發展有幾個特色。

第一個特色源自於波浪浪能高潛勢區。有關波 浪能轉換或發電的發展,由於歐洲地區起步較早, 而歐洲地區因緯度較高,附近海域位於信風帶上, 浪大、能高,因此波浪能的研發與技術集中於高波 能密度特性下的轉換器開發;相形之下,亞熱帶地 區的海域波能就顯得小巫見大巫。針對高波能潛勢 區所發展出來的系統,基本上難以適用於中低波能 地區。當然,波浪能轉換系統的設計必須考慮在地 海域的波浪特性,針對這些特性進行系統參數的調 校,以適用於在地海域。但即便如此,目前發展的 成果顯示,多數已經開發出來機組設計的效率大多 差不多,因此低波能密度的地區,所能擷取的能量 自然就少。

不過,低波能海域的海洋能擷取已經引起許多 研究者的注意[3-4],也有學者指出:波浪能發電廠 址的選擇,不只要考慮到波浪能的密度,還要顧及 可能損毀陣列機組的危險狀況,所以中等波能海域 可能比高波能海域更適合進行波浪能發電[5]。事實 上,我們知道亞熱帶地區海域或是中低波能海域其 實佔了全球較多的海域面積。面對此一事實,我們 至少有兩條可能的途徑,其一是利用一些既有的海 洋物理特性,創造出局部高波能區域;其二是研發 出較高效率的轉換器。雖然這兩條途徑都有相當的 挑戰性,但若能有所突破,則其商機與應用範圍將 高於高波能密度地區。

第二個特色源自於波浪能轉換系統的開發。我 們大略上可以看出,除了振盪水柱式波能轉換系統 外,多數的波浪能轉換系統的部分重要組件會暴露 在水面附近,而沒有受到適當的保護,這在實海域 隨機波浪作用之下,往往會造成六個自由度的運 動;雖然在設計上,我們可能只擷取少數幾個自由 度運動所帶來的能量,但卻往往無法免除其他自由

¹ 聯絡作者 陳建宏 (jhcntou@gmail.com)

度的運動。由於水運動所擁有的動能遠高空氣流動 的動能,因此極端天候下的極端波浪所造成的亂 流,很有可能會破壞機組結構,這在波浪能轉換系 統的發展歷史上,絕非絕無僅有。

針對以上的相關問題,本研究所提出的沉箱與 波浪能轉換器共構的系統,不僅可透過港池共振原 理帶來高的波能,具中低波浪能海域使用的優勢, 同時更具有保護發電系統的固有安全特性。

對於這類的系統,波浪與浮子之間的交互作用 是影響波浪能轉換的重要關鍵因素,同時也會影響 波浪能轉換系統的穩定性、自然頻率等。為了解這 些效應,模型實驗可直接提供重要的資訊,用以預 測原型機組在相似波浪條件下的行為反應,同時也 可以用來驗證數值方法或理論分析的主要結果。

在模擬分析上,多數研究者都是以線性勢流理 論與 Cummins 方程式為基礎,來模擬波浪與浮子之 間的交互作用所引發的水動力學現象[6],其中 Cummins 方程式考慮波浪作用在結構體上所產生的 激振力(excitation force)、以及結構體本身運動所產 生的放射力(radiation force)。文獻上,已有相當多 的方法可用來解析此套方程,文獻[7-9]為其中幾種 代表。雖然這套理論可以簡化問題,將物理現象線 性化,讓模擬的計算加快,但這也將物理現象偏限 在較小的波尖銳度(wave steepness)和較小的結構體 運動幅度,以至於和所期待的波浪能轉換器大幅度 運動有所衝突,因此相關的模擬並無法保證能準確 預測大波浪下波浪與波浪能轉換器之間的交互作 用。

為避免上述線性方程式所帶來的侷限,也有不 少研究者採用計算流體力學(CFD)的方式,求解 非線性的 Navier-Stokes 方程式,以能準確預測系統 和波浪在各種狀況下的交互作用[10-12]。在模擬 上,採用 CFD 必須要掌握一些關鍵,包括波形的預 測與浮子系統的運動預測,這些關鍵點在計算上都 極其耗時,在分析上相當不經濟。

介於線性化的勢流方法與全非線性黏性流的 Navier-Stokes 方程之間,也有一些部份簡化的方法 [13],一個典型的例子是弱散射體勢流法(weakscatterer potential flow method),這是 Pawlowski & Bass [14]提出來解析船舶在前進速度下的耐波性問題,此方法的基本假設是:浮子運動所造成的擾動 波浪場需遠小於入射波浪場,因此自由液面條件可 在入射波場的波形表面上加以線性化。弱散射體勢 流法將波浪與船體交互作用所造成的非線性非穩態 水動力負荷納入考慮,前提是黏性效應必須可以忽 略。不過,目前我們並不確定此方法是否適用於波 浪能轉換器的流體動力解析,主要原因是波浪能轉 換器可能為波浪場帶來不小的擾動,特別是在我們 所期待的共振情況(以擷取最多波浪能)之下。

弱散射體勢流法的進一步簡化是物體精準勢流法(body-exact potential method),這也是船舶運動分析中的方法[15]。此方法乃係在平均自由液面上進行自由液面條件的線性化,但把物體運動所造成的非線性效應納入考量,只是波浪的波尖銳度仍必須受到限制。

我們從上面的簡要的方法探討可知:若能用第 一個勢流方法進行快速計算,將可分析大量參數變 化對浮子運動與波浪能擷取的效應,從而找出較佳 的參數組合;然後再使用第二個 Navier-Stokes 方程 式的 CFD 分析,將能準確地分析出真正的波浪能擷 取。

擬探討的物理現象與基本設定

本計畫擬探討的物理現象是開口沉箱與波浪能 轉換器共構下的波浪能轉換。圖 1 為此系統的示意 圖,整個系統是由沉箱、浮子、以及動力外送器 (power take-off; PTO)三部分組成。浮子安置於沉 箱內,可受沉箱結構體的保護,降低極端海況對波 能轉換系統的破壞可能性;另外,浮子的運動受到 沉箱垂直壁面的約束,我們假設其運動模式以起伏 運動為主。動力外送器安置在水面以上,避開系統 的水密問題,在實際的工程建造上,可降低系統製 造的難度。基本上,動力外送器包括相關的連桿、 發電系統等,其形式有非常多種。

1. 物理理論模型之一:時間域問題

圖 2 為時間域問題計算域示意圖,假设流場為 無黏性、非旋性、不可壓縮,流體滿足拉普拉斯方 程,則我們有

圖 1 沉箱波浪能發電系統示意圖

圖 2 時間域三角形水槽示意圖

圖 3 沉箱機制計算示意圖

式中 $\Phi(x, y, z; t)$ 為速度勢函數,從數學上來說,式 (1)有無窮多解,為使拉普拉斯方程具有唯一的確定 解,需要相應的定解條件,定解條件包括初始條件 和邊界條件。求解該方程可以得到速度勢函數 $\Phi(x, y, z; t), 並進而求得速度向量<math>\mathbf{u}(x, y, z; t)$ 、壓 力場P(x, y, z; t)以及其他相關物理量。

相關的條件包括自由液面的運動邊界條件及動 力邊界條件、以及底部的不滲透條件。對於前二 者,傳統的流場問題描述中採用 Euler 法及半 Lagrange 法觀點, Euler 法是通過觀察不同流體質點 通過固定的空間點的運動情況來獲取整個流場空間 内的流動情況,即著眼於研宄各種運動要素的分佈 場。Lagrange 法觀點則是認爲計算域中的點位完全 跟隨著實際流體質點運動方向進行移動。介於拉格 朗日法與歐拉法之間的方法稱為半 Lagrangian 法 [16]。此方法要求空間點隨時間不全按液體質點運 動軌跡移動,是一種簡化方法,在這種簡化條件 下,自由面節點的水準座標無需更新,即在空間固 定一或兩個方向,空間點只能在垂直方向移動,因 此節點重新佈置變得較為容易,被廣泛應用於各類 水動力問題計算中。計及半 Lagrangian 法觀點的自 由水面運動邊界條件及動力學邊界條件[17-18]為

$$\frac{D\eta}{Dt}\Big|_{z=\eta+h} = \frac{\partial\Phi}{\partial z} - \frac{\partial\eta}{\partial x}\frac{\partial\Phi}{\partial x} - \frac{\partial\eta}{\partial y}\frac{\partial\Phi}{\partial y} \qquad (2)$$

$$\frac{D\Phi}{Dt}\Big|_{z=\eta+h} = -\frac{1}{2}\left[\left(\frac{\partial\Phi}{\partial x}\right)^2 + \left(\frac{\partial\Phi}{\partial y}\right)^2 + \left(\frac{\partial\Phi}{\partial z}\right)^2\right] \qquad (3)$$

$$-g\eta + \frac{\partial\Phi}{\partial z}\frac{D\eta}{Dt}$$

考慮阻尼層效應,可將本研究之三維三角形水 槽自由液面運動及動力邊界條件半 Lagrangian 近似 觀點下的表示為

$$\frac{D\eta}{Dt}\Big|_{z=\eta+h} = \frac{\partial\Phi}{\partial z} - \frac{\partial\eta}{\partial x}\frac{\partial\Phi}{\partial x} - \frac{\partial\eta}{\partial y}\frac{\partial\Phi}{\partial y} - v_1(x)(\eta - \eta_e) \quad (4)$$

$$-v_2(x)(\eta - \eta_e) - v_3(x)\eta$$

$$\frac{D\Phi}{Dt}\Big|_{z=\eta+h} = -\frac{1}{2}\left[\left(\frac{\partial\Phi}{\partial x}\right)^2 + \left(\frac{\partial\Phi}{\partial y}\right)^2 + \left(\frac{\partial\Phi}{\partial z}\right)^2\right] + -g\eta$$

$$+\frac{\partial\Phi}{\partial z}\frac{D\eta}{Dt} - v_1(x)(\phi - \phi_e) - v_2(x)(\phi - \phi_e) - v_3(x)\phi$$
(5)

2. 物理理論模型之二:頻率域問題

理論上,緩坡方程式(mild-slop equation)主要是 將 Laplace 方程式乘以滿足底部邊界條件(bottom boundary condition)的水深因數,再對水深由底部至 水面作積分,此舉可將計算問題由三維問題簡化為 二維,在本計劃針對共振沉箱共振機理研究中,採 用求解緩坡方程式可以快速求解沉箱共振受波浪週 期、波浪幅值以及沉箱尺寸等相關眾多參數影響, 以及相互之間交互作用機制。

本研究計算模型可簡化為如圖 3 所示,定義入 射波角度 θ_i 為與 x 軸之夾角,沉箱開口角度為 θ_c , 本文基於 Booij [19]和 Chamberlain & Porter [20]推導 出的拓展型緩坡方程如下

$$\nabla (CC_g \nabla \Phi) + k^2 CC_g \Phi + (f_1 g \nabla^2 \eta + f_2 g k (\nabla \eta)^2) = 0$$
(6)

式中 $f_1 和 f_2$ 為水深變化的函數,本研究為恆定水 深,因此二者均等於 0, k 為波數; $C 和 C_g$ 為波浪 相速度和群速度; η 為液面高度; g 為重力加速 度。同時,已知

$$\Phi = -i\frac{g}{\omega}\frac{\cosh k\left(z+h\right)}{\cosh kh}\eta\tag{7}$$

在僅考慮等水深情況下,式(6)運算式可簡化為 Helmholtz 方程

 $\nabla^2 \eta + k^2 \eta = 0 \tag{8}$

至於邊界條件,如圖 3 所示,在開放邊界 Γ_{∞} , 本研究採用局部輻射邊界條件

$$\frac{\partial \eta_s}{\partial R} - ik\eta_s = 0 \tag{9}$$

式中 $\eta_s = \eta - \eta_I - \eta_R$ 為輻射波, η_I 為入射波, η_R 為 反射波,式(9)可以改寫成

$$\frac{\partial \eta}{\partial R} - ik\eta = \frac{\partial (\eta_I + \eta_R)}{\partial R} - ik(\eta_I + \eta_R) \tag{10}$$

根據 Tsay 等人[21]研究結果,我們有

$$\eta_I + \eta_R = \exp[ikR\cos(\theta - \theta_I)] \tag{11}$$

此外,計算區域內之結構物邊界 Γ_{I} 和 Γ_{o} 則滿 足無通量邊界條件

$$\frac{\partial \eta}{\partial n} = 0 \tag{12}$$

廣義有限差分法

本研究在空間離散上採廣義有限差分法。廣義 有限差分法為區域型局部化的無網格配點法,其主 要概念由 Benito 等人[22]提出,本方法與有限差分 法相似,同樣以泰勒級數為理論出發點,但不同的 是其加入了以移動最小二乘方法進行截斷誤差極小 化的數學操作,進而推導出各階微分量的近似關 係。

如圖 4 所示,一個點雲可以在可變形計算領域的特定區域內找到。假設第 *i* 點是選定區域內的任意節點,則可以定義圍繞第 *i* 點最近的 n,節點來形

成一個星形。恒星的形狀可以有不同的選擇。在本研究中,為了簡單起見,採用了固定點數球形區域 選點。一旦定義了第*i*點的選點區域,即可使用被 二階導數截斷的泰勒級數來重新表述中心內部的控 制方程。因此,可以根據移動最小平方法定義 *B*(Φ_i^i)函數,從而產生

$$B(\Phi_{j}^{i}) = \sum_{i=1}^{n_{i}} \left| \begin{pmatrix} \Phi_{i} - \Phi_{j}^{i} + x_{ij} \frac{\partial \Phi}{\partial x} \Big|_{i} \\ + y_{ij} \frac{\partial \Phi}{\partial y} \Big|_{i} + z_{ij} \frac{\partial \Phi}{\partial z} \Big|_{i} \\ + \frac{x_{ij}^{2}}{2} \frac{\partial^{2} \Phi}{\partial x^{2}} \Big|_{i} + \frac{y_{ij}^{2}}{2} \frac{\partial^{2} \Phi}{\partial y^{2}} \Big|_{i} \\ + \frac{z_{ij}^{2}}{2} \frac{\partial^{2} \Phi}{\partial z^{2}} \Big|_{i} + x_{ij} y_{ij} \frac{\partial^{2} \Phi}{\partial x \partial y} \Big|_{i} \\ + x_{ij} z_{ij} \frac{\partial^{2} \Phi}{\partial x \partial z} \Big|_{i} + y_{ij} z_{ij} \frac{\partial^{2} \Phi}{\partial y \partial z} \Big|_{i} \end{pmatrix}$$
(13)

式中 Φ_i 和 Φ_j^i 是三維空間中第*i*點及鄰近第*j*點上 的物理量, $x_{ij} = x_j^i - x_i$, $y_{ij} = y_j^i - y_i$, $z_{ij} = z_j^i - z_i$ 為第*i*點與鄰近第*j*點*x*軸、*y*軸、*z*軸的座標差 值。 $w(x_{ij}, y_{ij}, z_{ij})$ 為在(x, y, z)點上的權重函數。在 本研究種選擇的是四次樣條函數(quartic spline)

$$w(x_{ij}, y_{ij}, z_{ij}) = \begin{cases} 1 - 6 \left(\frac{d_{ij}}{d_{\max}^{i}}\right)^{2} + 8 \left(\frac{d_{ij}}{d_{\max}^{i}}\right)^{3} - 3 \left(\frac{d_{ij}}{d_{\max}^{i}}\right)^{4}, & d_{ij} \leq d_{\max}^{i} \end{cases}$$
(14)
0, $d_{ij} > d_{ij}^{i} > d_{\max}^{i}$

式中 $d_{ij} = \sqrt{x_{ij}^2 + y_{ij}^2 + z_{ij}^2}$ 為第i點與第j點之間的距離, d_{max}^i 是第i點與球形內最遠的節點之間的距離。因為式(13)表示中心內截斷誤差乘上權重後取 其平方並累加起來,我們希望在三維空間中第點與鄰近點近似的截斷誤差累加越小越好。因此我們對

$$B(\Phi_{j}^{i}) \oplus \left. \frac{\partial \Phi}{\partial x} \right|_{i} \cdot \left. \frac{\partial \Phi}{\partial y} \right|_{i} \cdot \left. \frac{\partial \Phi}{\partial z} \right|_{i} \cdot \left. \frac{\partial^{2} \Phi}{\partial x^{2}} \right|_{i} \cdot \left. \frac{\partial^{2} \Phi}{\partial y^{2}} \right|_{i} \cdot \left. \frac{\partial^{2} \Phi}{\partial y^{2}} \right|_{i} \cdot \left. \frac{\partial^{2} \Phi}{\partial x \partial y} \right|_{i} \cdot \left. \frac{\partial^{2} \Phi}{\partial x \partial z} \right|_{i} \cdot \left. \frac{\partial^{2} \Phi}{\partial y \partial z} \right|_{i}$$

數為零,將微分結果寫成如下矩陣乘積形式

$$[A]_{9\times9} \{D\}_{9\times1} = \{b\}_{9\times1}$$
(15)

其中

$$D_{9\times1} = \left\{ \frac{\partial \Phi}{\partial x} \Big|_{i} \left| \frac{\partial \Phi}{\partial y} \Big|_{i} \left| \frac{\partial \Phi}{\partial z} \Big|_{i} \left| \frac{\partial^{2} \Phi}{\partial x^{2}} \Big|_{i} \left| \frac{\partial^{2} \Phi}{\partial y^{2}} \Big|_{i} \left| \frac{\partial^{2} \Phi}{\partial z^{2}} \Big|_{i} \left| \frac{\partial^{2} \Phi}{\partial x \partial y} \Big|_{i} \left| \frac{\partial^{2} \Phi}{\partial x \partial z} \Big|_{i} \left| \frac{\partial^{2} \Phi}{\partial y \partial z} \Big|_{i} \right| \right\}^{T}$$
(16)

$$\left\{b\right\}_{gal} = \begin{cases} \sum_{j=1}^{m} w_{j}^{2} h_{j}^{2} & \sum_{j=1}^{m} w_{j}^{2} h_{j} m_{j}^{2} & \sum_{j=1}^{m} w_{j}^{2} h_{j}^{2} h_{j}^{2} h_{j}^{2} & \sum_{j=1}^{m} w_{j}^{2} h_{j}^{2} h_{j}^{2} & \sum_{j=1}^{m} w_{j}^{2} h_{j}^{2} h_{j}^{2} & \sum_{j=1}^{m} w_{j}^{2} h_{j}^{2} h$$

最後,我們可以解得

$$\left. \frac{\partial \Phi}{\partial x} \right|_{i} = e_{1,0}^{i} \Phi_{i} + \sum_{j=1}^{j=n_{i}} e_{1,j}^{i} \Phi_{j}^{i}$$
(19)

$$\left. \frac{\partial \Phi}{\partial y} \right|_i = e_{2,0}^i \Phi_i + \sum_{j=1}^{j=n_i} e_{2,j}^i \Phi_j^i \tag{20}$$

圖 5 區域分解法與區域選點法示意圖

(a) 波高計(1.974 m,1.974 m)記錄與解析解比對

如上所述,開發的數值程式幾乎與經典的有限差分 方法完全相同,由於不需要座標變換,也不需要正 交網格,並且形成的矩陣為疏鬆陣列的優點,易於 程式設計,搭配 matlab 左除功能,計算非常高效。

區域分解法與區域選點法

如圖 5 所示,區域分解法(domain decomposition method, DDM)[23]的基本想法是將問題計算域劃分為幾個獨立的子域,通過組裝代數方程離散在每個子域,並互相受到兩個相鄰子域之間介面上的連續性條件,然後生成最終的線性方程組,進行求解。

區域分解法已經廣泛應用於薄板裂縫等退化邊界問題上,本案例沉箱壁面近似於退化邊界,沉箱內外存在不連續性,採用常規選點法必然導致計算不準確,因此有必要針對該問題,使用區域分解法觀念進行沉箱區域分解,然後結合相鄰子區域邊界條件,建立線性方程組,聯立求解。本研究還同時提出一種區域選點法(domain selection method,DSM)搭配廣義有限差分法來分析沉箱共振問題,案例根據沉箱佈局特點,將沉箱分爲入流區域、沉箱內部區域、沉箱後部區域,根據各自特性進行廣義有限 差分法(GFDM)區域點位互選,避免沉箱內部區域、沉箱後部區域相互選點而引起的不連續性問題,然後結合所需的邊界條件以及控制方程式即可進行求解。

結果與討論

1. 數值方法驗證

本節主要通過基於 GFDM 建立的數值波浪水 池對三維斜向規則波、單圓柱與規則波相互作 用、水面浮體與規則波相互作用進行數值模擬, 驗證所構建的數值波浪水池具有和物理波浪水池 一樣有效的造波功能,不僅可以模擬生成不同類 型的波浪條件,模擬波浪與結構物的相互作用, 還具有波高探測,壓力探測和物體受力計算、運 動記錄等功能。為後續的波能擷取模擬提供良好 的基礎。

首先對三維斜向規則波進行模擬,如圖 6 所 示為三維數值波浪水池計算模型,三維數值波浪 水池模型的尺寸為 $8.5 \text{ m} \times 8.5 \text{ m}$,水深為 0.8 m。 計算域左側和前側邊界設置為造波邊界條件,與 之相對的邊界設置為出口邊界,並在出口邊界前 設置海綿層消波區。在數值波浪水池中模擬沿斜 向 $45^{\circ} \times 30^{\circ} \times 15^{\circ}$ 傳播的規則波,目標波高為 H =0.1 m,波長為 $\lambda = 1.5 \text{ m}$,週期 T = 0.9814 s,為 了驗證本水池數值結果的準確性,本研究在 (\hat{x}, \hat{y}) = (1.974 m, 1.974 m)、(2.526 m, 2.526 m)、(3.016 m, 3.016 m)等位置放置波高計記錄波浪高程時間 序列資料,並將結果與對應位置上的二階斯托克 斯波的解析解進行比對。

對於斜向 45°造波狀況,圖 6 顯示三種不同節 點長度 $dx = dy = dz = \lambda/40$, $\lambda/30$, $\lambda/20$ 計算結果 與解析解比對,顯示波型幾乎完全吻合,僅在節 點長度較大時相位有一定誤差。

為驗證造波水池對不同斜向造波仍然具有適用性,本案例繼續開展沿斜向 30°、15°傳播的規

(c) 15°斜向造波波面圖

圖 7 不同造波角度下, t = 10 s 時的刻波面圖

則波,結果與前例類似,顯示數值波浪水池的適 用性沒有問題。

圖 7 為不同造波角度下, 在t = 10 s 時的波面 情況。

2. 單圓柱與規則波相互作用

在海洋結構物設計過程中,需要對其可能遭 受的最大載荷進行預報,進而計算並確定其建造 結構形式和材料強度。對波浪力載荷進行預報的 準確性,將影響到海洋結構物的建造成本,以及 結構物在未來使用過程中的安全性和穩定性,受

圖 10 三維圓柱波浪橫向力(時間步長測試)

力的準確計算也是共振沉箱式波能發電裝置模擬 的前提條件。本測試例的水池的結構尺寸及造波 條件參照文獻[24]設定。本案例水池如圖 8 所示, 其中水池的長度定為 $w_1 = w_2 = 125 \text{ m}$,水池靜止水 深設定為h = 10 m,圓柱體圓心位於 $\hat{x} = 37 \text{ m}$, $\hat{y} = 37 \text{ m}$,圓柱的半徑為r = h = 10 m,爲了消除反 射波對計算結果的影響,此案例採用三邊消波的 形式,阻尼層厚度因數設定為 $\beta_1 = \beta_2 = \beta_3 = 1$,阻 尼層的調變因數設定為 $\alpha_{s1} = \alpha_{s2} = \alpha_{s3} = 1$ 。

造波條件與前述無結構物案例相同為二階斯 托克斯波,而依照文獻設定為造波波高為 H =0.6684 m、波浪入射波長為 $\lambda = 22.38$ m,其所對 應的波浪週期為 T = 3.7190 s。如圖 9-10 所示為

圖 12 t = 1, 5, 10, 15 s 時刻波面圖

圖 13 水面浮體與規則波相互作用案例示意圖

圖 14 數值結果比對($\lambda = 1.57 \text{ m}$, H = 0.07 m)

本案例水池不同節點長度及時間步長與文獻進行 比對驗證,其中橫軸與文獻使用相同的無因次化 時間 $t^* = t(g/h)^{1/2}$ 。比對結果顯示,本案例計算方 法有較高的準確性。為驗證案例對於大波陡的適 應性,本案例模擬了波高為 H = 1.3368 m、波浪 入射波長為 $\lambda = 22.38$ m,波浪週期為 T = 3.7190s,比對結果如圖 11 所示,結果說明本案例水池 對於大波陡情況同樣具有一定的準確性,展示較 強的應用前景。如圖 12 所示為 $t = 1 \cdot 5 \cdot 10 \cdot 15$ s 時刻波面情況。

3. 浮體與規則波相互作用

為驗證基於加速度勢法的廣義有限差分法在 水面浮體與規則波相互作用,本測試例的水池的 結構尺寸及造波條件參照文獻[25]設定,圖 13 為 水池示意圖,水池靜水深設定為 $h=\lambda$,即水深與 入射波長相同。水池之總長度為 $b=5\lambda$ 。浮體所設 置的位置為浮體前端距離造波端 $K=2.5\lambda-0.25$ m 處,浮體之寬度 B 在測試中固定為 B = 0.5 m,此 浮體之浸沒水深在測試過程中固定在d = 0.25 m, 而因為浮體結構物會在前方產生劇烈的反射效 應,因此為了不影響後續受力分析的結果,本水 池在前後方分別設置了前置與後置人工阻尼層吸 收波浪能量。相關的測試波長範圍從 1.0 m 到 4.2 m,有兩個不同的波高 H = 0.01 m和 0.07 m。造 波條件與前述案例相同,皆為二階 Stokes 波。

圖 14 所示為波長 λ =1.57 m,波高 H = 0.07 m 情況下,本文浮體起伏運動數值結果與 Koo 等 人研究結果比對,從比對結果可以看出,計算結 果具有較高的準確性;同時通過 Fourier 變換提取

不同波長下浮體運動幅值 RAO 與前人研究結果比 對如圖 15 所示,從圖中可以看出本文數值方法結 果與理論解吻合較好,説明該數值方法對浮體運 動具有很好的適用性。

4. 共振沉箱

首先針對所開發的計算共振沉箱數值波浪水 池準確性進行驗證。Lee [26]曾進行過有關港池共 振的實驗;雖然本研究的沉箱坐落於水域中,並 非一般的港池共振是發生於被陸地所包圍的水體 內,但共振沉箱引發的波浪放大現象仍是屬於港 池共振現象的一種,因此將以港池共振現象的實 驗結果來驗證本方法用來模擬共振沉箱的適用 性。

為驗證數值方法適用性,本案例開發數值水 池示意圖如圖 16 所示,案例水池兩邊邊長設定為 6 m,水池靜止水深設定為 d = 0.4 m,水池末端 放置開口為 60°的半徑為1m港池,水池兩側邊為 造波端,並設置消能層,其他邊界設置為不透水 邊界,在港池中心處設置波高計監測液面變化, 開展不同波浪參數的對港池共振效果的影響。在 數值方法上,本案例結合區域分解法將港池分為 內外兩個區域,通過入口邊界進行匹配,为了便 於沉箱內部的共振特性討論本研究定義放大係數 為港池中心點波高/入射波波高。爲了節省計算時 間,本研究選擇計算波長為 1.528~1.847 m 下 10 個不同波浪條件進行數值模擬。根據不同波浪條 件下放大係數的時歷曲綫,利用傅里葉變換,將 時曆曲線轉化為相對應 ka 下波浪放大係數與 Lee [26]之實驗進行比對,如圖 17 所示,結果可以看 出運用勢流理論可以很好的模仿出港池共振現 象,本案例初步表明了開發數值水池模式可以準 確模擬共振現象。

在完成港池共振的基礎上,本文展開共振沉 箱不同週期下的對沉箱共振效果的影響,計算模 型如圖 18 所示,案例水池兩邊邊長設定為 12 m,水池靜止水深設定為 d = 0.4 m,水池(3.5 m, 3.5 m)放置開口為 60°的半徑為 1 m 沉箱,水池 側邊為造波端,並設置消能層,沉箱壁面邊界設 置為不透水邊界,在港池中心處設置波高計監測

圖 21 不同沉箱開口下平均放大係數(無導罩)

液面變化。在數值方法上,本案例主要結合區域 區域選點法,將港池分為港池内與港池外兩個區 域。

圖 19為 1.528 m~1.847 m下,10 個不同波浪 條件進行數值模擬港池與沉箱結果比對。從圖中 可以看出,沉箱同樣具有放大波高作用,但共振 頻率與港池略有不同,有待後續深入討論。

由於沉箱結構為直立與水面固定結構物,在 開始中可以引入求解緩坡方程式,將問題由三維 轉化爲二維來進行研究。接下來我們考慮了兩種 不同形狀沉箱,即有導罩沉箱以及無導罩沉箱。

為了便於沉箱內部的共振特性討論,放大係 數分別為 R_c和 R_a,其中 R_c是反映沉箱中心共振特 性的中心放大係數, *R*_a則反映的平均共振特性的 平均放大係數整個沉箱, 定義為

$$R_a = \frac{\sum_{i \in \Omega_I} R_i}{n_i} \tag{28}$$

其中 n_i 為內部域 Ω_i 中的總節點數,對於本節所示的所有模擬,採用圓柱體的半徑和入射波振幅分別為 $a = 1 m \pi A = 1 m$ 。

本節繼續以港池共振現象的實驗結果來驗證 本方法用來模擬共振沉箱的適用性。圖 20 為本文 數值方法與 Lee [26]研究結果比對,從比對結果可 以看出,不論在峰值範圍以及峰值的大小吻合度 均較高,說明本文研究方法具有很好的準確性。

從圖 20 還可知,沉箱內部的 和 特性存在很 大差異,尤其是在 ka = 3.89 時,中心點位放大係 數遠大於沉箱內部點位平均放大因數,因此有必 要重點研究沉箱內部點位平均放大係數,圖 21 為 無導罩情況下想通過入射波角度情況下不同沉箱 開口平均放大係數,從圖中可以看出,不同沉箱 開口角度均存在多種共振模態,峰值的出現隨著 開角的增加逐漸延遲,開口角度小峰值反而較大 (即港口悖論),同時也可以看出普遍在 ka = 0.5 區間內,捕獲能量的範圍大。

圖 22 則為有導單情況下,通過入射波角度情況下不同沉箱開口平均放大係數。從圖中可以看出,其現象特性與無導單情況下基本一致;同時,有導單情況下峰值明顯略大於無導單情況, 說明增加導單會提高液面放大因子,這與 Lin 等人的研究結果一致。

從以上討論中可以看出,基於沉箱的波能發 電裝置的概念是一種可行的策略,因為前四種共 振模式的相應波週期在 3~15 s 的範圍內,這是實 際海洋工程中最常見的範圍。從上圖也可以看 出,前兩種諧振模式似乎是應用中最可行的設計 參數。然而,需要強調的是,儘管第二個諧振模 態具有最高的模態峰,但其頻寬非常窄,因此在 海洋工程設計中不太實用。從這個角度來看,第 一共振模態可能是沉箱的最佳選擇。

結論

本計畫成功發展出無網格法的流固耦合勢流計 算,包括時間域與頻率域相關理論的推導,以及程 式的撰寫與案例計算,發現確實可加速優化參數組 合的尋找。如以上的推導與計算分析,我們首先進 行相關的驗證,結果顯示本計畫所開發的方法可以 準確地解析相關的物理現象,然後我們將相關方法 應用於沉箱的波浪放大計算,並結合浮子與沉箱的 運動計算,計算的成果顯示能有效地解析沉箱內的 波能放大現象。

本研究使用的廣義有限差分法是近年來提出的 一種區域型無網格法,可以視為有限差分法無網格 化,保持了傳統差分法的簡易性和有限元法的高精 度性,只需要在邊界和計算域內部佈點即可進行計 算,最終組成的線性代數系統矩陣是稀疏矩陣,降 低了求解難度,但是由於其區域型的特性,構建的 疏鬆陣列在 matlab 程式無法進行平行計算,而其區 域選點特性導致布點在同一區域內仍需要相對均 勻,導致在大計算域問題上需要消耗較多的計算 量,雖然使用 GPU加速可以在一定程度上對計算時 間改善,但仍然無法達到工程應用的需要。

本研究的勢流理論忽略流體黏性,將流體視為 不可壓縮、無黏性和不可壓縮的理想流體。在某些 問題的研究中可以加快計算時間,提升計算效率, 但是忽略粘性效應,無法解釋渦流、邊界層以及黏 性流體中的能量損失和阻力等現象,在結果的準確 性上略有欠缺。

參考文獻

- Etemadi, A., A. Emdadi, O. AsefAfshar, and Y. Emami, "Electricity generation by the ocean thermal energy," *Energy Procedia*, Vol. 12, pp. 936-943 (2011).
- 2. Mofor, L., J. Goldsmith, and F. Jones, *Ocean Energy: Technology Readiness, Patents, Deployment Status, and Outlook,* Report, IRENA (2014).
- 3. Mustapa, M.A., O.B. Yaakob, Y.M. Ahmed, C.-K. Rheem, K.K. Koh, F.A. Adnan, "Wave energy device

and breakwater integration: a review," *Renew. Sustain. Energy Rev.*, Vol. 77, pp. 43-58 (2017).

- 4. Lavidas, G., "Energy and socio-economic benefits from the development of wave energy in Greece," *Renew. Energy*, Vol. 132, pp. 1290-1300 (2019).
- Lavidas, G. and B. Kamranzad, "Assessment of wave power stability and classification with two global datasets," *Int. J. Sustain. Energy*, Vol. 40, pp. 514-529 (2021).
- Cummins, W.E., "The impulse response function and ship motions," Schiffstechnik, Vol. 9, pp. 101–109 (1962).
- Armesto, J., R. Guanche, F.d. Jesus, A. Iturrioz, and I.J. Losada, "Comparative analysis of the methods to compute the radiation term in Cummins' equation," *Ocean Eng. Mar. Energy*, Vol. 1, pp. 377-393 (2015).
- Penalba, M. and J.V. Ringwood, "A review of wave-towire models for wave energy converters," Energies, Vol. 9, 506 (2016).
- Penalba, M., G. Giorgi, and J.V. Ringwood, "Mathematical modelling of wave energy converters: A review of nonlinear approaches," *Renew. Sustain. Energy Rev.*, Vol. 78, pp. 1188-1207 (2017).
- Lin, Y.-X., D.-W. Chen, and J.-H. Chen, "Simulation of a resonance-amplified floater oscillation in an open-type circular caisson," *13th Euro. Wave Tidal Energy Conf.*, Napoli, Italy (2019).
- Dafnakis, P., A.P.S. Bhalla, S.A. Sirigu, M. Bonfanti, G. Bracco, and G. Mattiazzo, "Comparison of wave– structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models," *Phys. Fluids*, Vol. 32, 093307 (2020).
- Windt, C., J. Davidson, and J.V. Ringwood, "Investigation of turbulence modeling for point-absorber-type wave energy converters," *Energies*, Vol. 14, 26 (2021).
- 13. Wuillaume, P.Y., *Numerical Simulation of Installation Operations for Offshore Wind Farms*, Doctoral thesis, Ecole Centrale de Nantes (2019).
- Pawlowski, J.S. and D.W. Bass, "A theoretical and numerical model of ship motions in heavy seas," *SNAME Trans.*, Vol. 99, pp. 319-350 (1991).
- Subramanian, R. and R. F. Beck, "An improved bodyexact method to predict the maneuvering of ships in a seaway," 38th Int. Conf. Ocean, Offshore Arctic Eng., Glasgow, UK (2019).
- Ryu, S., M.H. Kim, and P.J. Lynett, "Fully nonlinear wave-current interactions and kinematics by a BEMbased numerical wave tank," *Comput. Mech.*, Vol. 32, pp. 336-346 (2003).
- Huang, J., C.-N. Chu, C.-M. Fan, J.-H. Chen, and H. Lyu, "On the propagation of nonlinear water waves in a threedimensional numerical wave flume using the generalized finite difference method," *Eng. Anal. Bound. Elem.*, Vol. 119, pp. 225-234 (2020).
- Huang, J., H. Lyu, C.-M. Fan, J.-H. Chen, C.-N. Chu, and J. Gu, "Wave-structure interaction for a stationary surface-piercing body based on a novel meshless scheme with the generalized finite difference method," *Mathematics*, Vol. 8. 1147 (2020).
- 19. Booij, N., "A note on the accuracy of the mild-slope equation," *Coast. Eng.*, Vol. 7, pp. 191-203 (1983).

- P.G. Chamberlain and D. Porter, "The modified mildslope equation," *J. Fluid Mech.*, Vol. 291, pp. 393-407 (1995).
- Tsay, T.K., W. Zhu, and P.F. Liu, "A finite element model for wave refraction, diffraction, reflection and dissipation," *Appl. Ocean Res.*, Vol. 11, pp. 33-38, 1989.
- Benito, J., F. Ureña, and L. Gavete, "Influence of several factors in the generalized finite difference method," *Appl. Math. Model.*, Vol. 25, pp. 1039-1053 (2001).
- 23. Chen, C.W., C.-M. Fan, D.L. Young, K. Murugesan, and C.C. Tsai, "Eigenanalysis for membranes with stringers using the methods of fundamental solutions and domain

decomposition," Comput. Model. Eng. Sci., Vol. 8, pp. 29-44 (2005).

- 24. Kumar, P.S., C.P. Vendhan and P. Krishnankutty, "Study of water wave diffraction around cylinders using a finite-element model of fully nonlinear potential flow theory," *Ships Offshore Struct.*, Vol. 12, pp. 276-289 (2017).
- 25. Koo, W. and M.-H. Kim, "Freely floating-body simulation by a 2D fully nonlinear numerical wave tank," *Ocean Eng.*, Vol. 31, pp. 2011-2046 (2004).
- Lee, J., "Wave-induced oscillations in harbours of arbitrary geometry," J. Fluid Mech., Vol. 45, pp. 375-394 (1971).